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Abstract. We present a path integral Monte Carlo calculation of the first three moments of
the displacement–displacement correlation functions of solid neon at different temperatures, for
longitudinal and transverse phonon modes. The Lennard-Jones potential is considered. The
relevance of the quantum effects on the frequency position of the peak and principally on
the line-width of the spectral shape is clearly pointed out. The spectrum is reconstructed via
a continued fraction expansion; the approximations introduced using the effective potential
quantum molecular dynamics are discussed.

Rare gas solids (RGS) are the simplest real systems in which we can study lattice vibrations.
Argon and the heavier RGS can be well approximated as a set of harmonic oscillators at
low temperatures, while classical behaviour is reached before the melting point. Quantum
corrections on the thermodynamic quantities, like kinetic energy and specific heat, can be
taken into account by means of the effective potential (EP) approach [1] only for small
quantum couplingg (g < 0.25), defined as the ratio between the characteristic frequency
and the strength of the binding potential. For neon (g = 0.694) anharmonic effects are
present even for determining the ground state [2, 3]. Indeed, precise calculations of kinetic
energy, to be compared with accurate experiments done by deep inelastic neutron scattering
(DINS) [4], needed a rather sophisticated path integral Monte Carlo (PIMC) computation, the
EP approach being inadequate. These results show that quantum effects are very important
also at rather high temperatures [2].

Information about phonon dynamics is given by spectral shape, namely the space
and time Fourier transform of the (symmetrized) displacement–displacement correlation
function:

SαβS (k, ω) = 1

2π

∑
r

∫
dt Cαβ(r, t) exp[i(k · r − ωt)] (1)

with

Cαβ(r, t) =
[〈
xαi+r(t)x

β

i (0)
〉
+
〈
xαi+r(0)x

β

i (t)
〉]
. (2)

xαi is theαth component of the displacement of theith atom from its equilibrium position.
Even though this quantity has been investigated for many years [5], complete information is
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not available for various rare gas solids and in particular for neon. The perturbative many-
body approach can give the frequency and lifetime of phonons only at low temperatures.
Classical molecular dynamics (CMD) can describe the behaviour of argon and krypton at the
highest temperatures, but it is no longer valid for lower temperatures or stronger coupling.
As shown in the following, the spectra of neon present significant quantum effects up to
the melting point and the high quantum coupling prevents us from using the EP method in
the entire temperature range.

We approach the calculation of the spectra of neon as given in equation (1), by PIMC,
evaluating the first three even frequency moments〈

ω2n
〉αβ
k
=
∫ ∞
−∞

dω ω2nSαβS (k, ω) (3)

while the odd moments vanish for symmetry reasons. As it is well known, this involves
the PIMC calculation of static correlations obtained by multiple commutators ofxαk (t) =
N−1/2∑

i exp(ik · i)xαi (t) with the Hamiltonian:〈
ω2n

〉αβ
k
= 1

2

〈
dnxαk
dtn

∣∣∣∣
t=0

dnxβ−k
dtn

∣∣∣∣∣
t=0

+ dnxα−k
dtn

∣∣∣∣
t=0

dnxβk
dtn

∣∣∣∣∣
t=0

〉
. (4)

Here we will refer only tok = 2π/a0(1, 0, 0) for which one longitudinal and two degenerate
transverse modes are present, so that we omit polarization indexes.

When the spectra are sufficiently narrow, the normalized second moment,δ1k and the
irreducible part of the fourth moment,δ2k:

δ1k =
〈
ω2
〉
k〈

ω0
〉
k

δ2k =
〈
ω4
〉
k〈

ω2
〉
k

− δ1k (5)

can be directly related to the peak position and width of the spectra [6].
A reconstruction of the spectra can be done by the continued fraction expansion of the

Laplace transform of the normalized correlation function

40(k, z) =
∫ ∞

0
dt
C(k, t)

C(k, 0)
e−zt (6)

with

SS(k, ω) = <40(k, z = iω) C(k, t = 0). (7)

The continued fraction expansion can be stopped at the third stage with a suitable termination
42(k, z)

40(k, z) ' 1

π

1

z+ δ1k

z+ δ2k42(k, z)

. (8)

In this letter, we shall present some of these spectra, showing the validity of the approach.
Neutron scattering data are not available to date and we suggest and discuss here the
possibility of performing such an experiment.

We have considered samples of solid neon, with 256 atoms interacting through a (12–6)
Lennard-Jones pairwise potential

V (r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]

(9)

and periodic boundary conditions. The dynamic interaction is limited to the 12 nearest
neighbours, while for the outer shells the static approximation is used. For every temperature
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Table 1. Moments(M2n ≡ 〈ω2n〉k) of SS(k, ω) for T = 10 K at vanishing pressure, for the
wave vectork = 2π/a0(1, 0, 0). They are expressed in reduced units.b = 2.787 Å and
ω0 = 0.289 meV. Classical second moments are exact since they are equal to the reduced
temperature.

Transverse

Classical EP PIMC

M0/b
2(×10−4) 8.427± 0.005 30.02± 0.01 28.28± 0.06

M2/(b
2ω2

0) 0.272 6281 0.7027± 0.0002 0.788± 0.002
M4/(b

2ω4
0) 98.13± 0.05 168.5± 0.1 314± 3

Longitudinal

Classical EP PIMC

M0/b
2(×10−4) 3.955± 0.002 20.732± 0.008 19.02± 0.05

M2/(b
2ω2

0) 0.272 6281 0.9902± 0.0003 1.141± 0.004
M4/(b

2ω4
0) 205.0± 0.2 467.3± 0.3 849± 6

Table 2. Moments(M2n ≡ 〈ω2n〉k) of SS(k, ω) for T = 20 K at vanishing pressure, for the
wave vectork = 2π/a0(1, 0, 0). They are expressed in reduced units.b = 2.787 Å and
ω0 = 0.289 meV. Classic second moments are exact since they are equal to the reduced
temperature.

Transverse

Classical EP PIMC

M0/b
2(×10−4) 20.92± 0.02 36.50± 0.05 34.7± 0.3

M2/(b
2ω2

0) 0.545 256 0.8387± 0.0006 0.870± 0.002
M4/(b

2ω4
0) 182.3± 0.3 218.6± 0.4 347± 3

Longitudinal

Classical EP PIMC

M0/b
2(×10−4) 9.67± 0.01 22.47± 0.02 21.3± 0.1

M2/(b
2ω2

0) 0.545 256 1.1022± 0.0006 1.157± 0.006
M4/(b

2ω4
0) 380.3± 0.5 560.1± 0.3 872± 8

Table 3.
√
δ1 and

√
δ2/2 roughly represent the peak position and the phonon lifetime,

respectively. They are evaluated via PIMC simulations and they are expressed in meV.

Transverse Longitudinal

T (K)
√
δ1

√
δ2/2

√
δ1

√
δ2/2

10 4.83± 0.02 1.58± 0.1 7.01± 0.02 1.78± 0.06
20 4.57± 0.02 1.74± 0.1 6.76± 0.02 2.07± 0.06

we resorted to three different Trotter numbers:P = 8, 16, 24. For each of them, 16
simulation runs of 100 000 steps per particle were performed, plus 20 000 steps per particle
for initial thermalization. The density was adjusted in order to get a practically vanishing
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pressure (the pressure is always less than 15 atm). The parameters of the Lennard-Jones
potential are taken asε = 36.68 K andσ = 2.787 Å [7]. The melting temperature of neon
at zero pressure is 24.5 K.

2.0 4.0 6.0 8.0
ω (meV)

0.0

0.2

0.4

0.6

0.8

Figure 1. Transverse projection of the (normalized) space and time Fourier transform of
the symmetrized displacement–displacement correlation function,SS(k, ω)/C(k, t = 0). At
T = 10 K, ρ = 1.494 g cm−3 for k = 2π/a0(1, 0, 0) and zero pressure. The dashed line refers
to CMD results, the long-dashed one to EPMD results, and the solid line to results obtained via
continued fraction expansion and PIMC evaluation of frequency moments.

Detailed explanations of the total procedure and results for the first three even moments
[8], at different temperatures for longitudinal and transverse modes, will be presented in an
extended paper. Here we want to point out that when the order of the frequency moment
increases, more complicated static correlations are involved. Moreover accurate Trotter
extrapolations are in order and finite-size effects are more and more important. We have used
the procedure introduced by us [2, 9] by which we correct the raw PIMC data, subtracting
the exact contributions of the harmonic part for finiteP and N , and adding the exact
harmonic results for infiniteP andN . In this way, an accuracy of 0.2% is reached for the
zeroth moment, which rises to 1% for the fourth moment. This corresponds to a maximum
uncertainty of 4% forδ2k. Classical simulations were also done for comparison, using both
the classical and the effective potential.

The necessity to account for quantum effects by an ‘exact’ method like PIMC has
been ascertained, especially for higher-order moments. The fourth moment exhibits strong
quantum effects at any realistic temperature which cannot be approached by the EP method.
In tables 1 and 2 we report the first three even moments together with the analogous ones
obtained by classical and EP Monte Carlo calculations. The fourth moment is related to
the width of the spectra (phonon lifetime) through the quantityδ2k. For narrow spectra
(δ2k � δ1k), the phonon frequencies areωk ∼

√
δ1k while the phonon lifetimes are

ηk ∼
√
δ2k/2. These quantities, shown in table 3, can be probed by inelastic neutron
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Figure 2. The same as in figure 1 for the longitudinal projection of the (normalized) space
and time Fourier transform of the symmetrized displacement–displacement correlation function,
SS(k, ω)/C(k, t = 0), at T = 10 K, ρ = 1.494 g cm−3 for k = 2π/a0(1, 0, 0).

scattering.
Finally, we have calculated the spectra with the availableδ1k, δ2k by means of the

continued fraction (8) and with a suitable ‘Gaussian termination’ [10]:42(k, t) =
exp

(−0t2) . The parameter0, is determined by the insight on the corresponding spectra
obtained by CMD [11] .

As an example, some spectra are shown in figures 1 and 2. In these figures we also
report the similar spectra, obtained by EP molecular dynamics (EPMD) [12].

We therefore can conclude that:

(i) Quantum effects in solid neon are relevant at all temperatures so that neon cannot be
approached by classical models.

(ii) The evaluation of the spectral width requires particular care and a fully quantum
treatment of the fourth moment. EPMD, as observed in [13], can correctly give the
peak position only because it reproduces just the short-time behaviour and consequently
the second moment; using this method the phonon damping is therefore calculated by
considering classical processes only. This is not sufficient for giving a good description
of the spectra, as on the other hand our approach is expected to do.

We conclude suggesting new accurate neutron scattering experiments in order to investigate
quantum effects in solid neon. In particular our results on zero momentM0 ≡ C(k, t = 0)
can be tested measuring the integrated intensity, while the aforementioned features of the
line shapes can be directly compared with experimental spectra.

We would like to thank Professor S W Lovesey for useful discussions. One of us (VT)
wants also to thank him for hospitality in the very stimulating atmosphere of the Rutherford
Appleton Laboratory.
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